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Introduction: Overview

• The Remote sensing is the 
processes of detecting and 
monitoring an object or an area by 
measuring its reflected and emitted 
radiation. It is widely used in the 
Planetary Geology to study surface 
properties of Planets and Asteroids

• The Transport Theory represents the theoretical underpinning of remote 
sensing. Radiative Transfer Equation (RTE) describes how radiation and 
matter interact based on the particle description of light
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Introduction: Goals

• To solve the RTE using the recently developed 
Theory of Connections (ToC) [Mortari 2018]

• The focus of this talk is to show the capability of 
ToC in solving 1D Radiative Transfer Equation with 
high accuracy
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Radiative Transfer for Remote Sensing 

• Solving radiative transfer problems for remote sensing is 
generally hard and computationally expensive

– No direct analytical solutions except in very limited cases

• Solutions to radiative transfer problems for remote sensing 
generally are

– Semi-analytical

▪ High accuracy in limited cases

– Numerical

▪ Hard implementation
7



• ToC derives expressions, called constrained expressions, with an embedded set of n linear 
constraints

𝑦 𝑡 = 𝑔 𝑡 +෍

𝑘=1

𝑛

𝜂𝑘𝑝𝑘(𝑡) = 𝑔 𝑡 + 𝜼𝑻𝒑(𝑡)

• According to the literature, the g(t) used will be an expansion of orthogonal polynomials 
(Chebyshev)

– The solution of the problem is reduced to the calculation of the coefficients of the 
expansion of Chebyshev polynomials

• ToC has been used to solve several kind of problems, both linear and non-linear, in different 
areas

– Energy Optimal Landing Guidance – linear- [Furfaro and Mortari 2018]; 

– Fuel Efficient Landing Guidance – non linear- [Schiassi, Furfaro, et. Al 2019] 

• Machine error accuracy in milliseconds

ToC approach to solve Linear ODEs
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Application of the ToC for the solution of a linear ODE, with two constraints at two points:

𝑘2 𝑡 ሷ𝑦 𝑡 + 𝑘1 𝑡 ሶ𝑦 𝑡 + 𝑘0 𝑡 𝑦 𝑡 = 𝑓(𝑡) subject to: ൝
𝑦 𝑡0 = 𝑦0
𝑦 𝑡𝑓 = 𝑦𝑓

• Change of independent variable, to be able to use an expansion of orthogonal polynomials 

from 𝑡 ∈ 𝑡0, 𝑡𝑓 to 𝑥 ∈ 𝑥0, 𝑥𝑓 , where  𝑥0 = −1, 𝑥𝑓 = 1.

The new variable 𝑥 is defined as:

Where 𝑐 is the integration range ratio:

Due to the derivative chain rule, it follows that:

𝑦 𝑡 = 𝑦 𝑥 𝑑𝑦

𝑑𝑡
= ሶ𝑦 = 𝑐

𝑑𝑦

𝑑𝑥
= 𝑐𝑦′

𝑑2𝑦

𝑑𝑡2
= ሷ𝑦 = 𝑐2

𝑑2𝑦

𝑑𝑥2
= 𝑐2𝑦′′

𝑥 = 𝑐 𝑡 − 𝑡0 + 𝑥0

𝑐 =
𝑥𝑓 − 𝑥0

𝑡𝑓 − 𝑡0

ToC approach to solve Linear ODEs
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• Replacing in the equation we get:

𝑐2𝑘2𝑦
′′ 𝑥 + 𝑐𝑘1𝑦

′ 𝑥 + 𝑘0𝑦 𝑥 = 𝑓(𝑥) subject to: ൝
𝑦 𝑥0 = 𝑦0
𝑦 𝑥𝑓 = 𝑦𝑓

• Constrained expressions

𝑦 𝑥 = 𝑔 𝑥 + 𝜂1𝑝 𝑥 + 𝜂2𝑞(𝑥)

𝑦′ 𝑥 = 𝑔′ 𝑥 + 𝜂1𝑝
′ 𝑥 + 𝜂2𝑞

′(𝑥)

𝑦′′ 𝑥 = 𝑔′′ 𝑥 + 𝜂1𝑝
′′ 𝑥 + 𝜂2𝑞

′′(𝑥)

where: 𝑔 𝑥 = ℎ𝑇 𝑥 𝜉

𝑔′ 𝑥 = ℎ′
𝑇
𝑥 𝜉

𝑔′′ 𝑥 = ℎ′′
𝑇
𝑥 𝜉

ToC approach to solve Linear ODEs
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⇒
𝜂1 =

1

Δ
𝑞0ℎ𝑓

𝑇 − 𝑞𝑓ℎ0
𝑇 𝝃 +

1

Δ
𝑞𝑓𝑦0 − 𝑞0𝑦𝑓

𝜂2 =
1

Δ
𝑝0ℎ𝑓

𝑇 + 𝑝𝑓ℎ0
𝑇 𝝃 +

1

Δ
𝑝0𝑦𝑓 − 𝑝𝑓𝑦0

where: Δ = 𝑝0𝑞𝑓 − 𝑞0𝑝𝑓 ≠ 0

• Using the boundary conditions, we find 𝜂1, 𝜂2

ቊ
𝑦0 = 𝑔0 + 𝜂1𝑝0 + 𝜂2𝑞0
𝑦𝑓 = 𝑔𝑓 + 𝜂1𝑝𝑓 + 𝜂2𝑞𝑓

→
𝑝0 𝑞0
𝑝𝑓 𝑞𝑓

𝜂1
𝜂2

=
𝑦0 − 𝑔0
𝑦𝑓 − 𝑔𝑓

⇒

ToC approach to solve Linear ODEs
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• By replacing the newly found values of 𝜂1, 𝜂2 in the constrained expressions, we get:

𝑦 𝑥 = ℎ𝑇 𝑥 +
𝑝 𝑥

Δ
𝑞0ℎ𝑓

𝑇 − 𝑞𝑓ℎ0
𝑇 +

𝑞 𝑥

Δ
𝑞𝑓ℎ0

𝑇 − 𝑝0ℎ𝑓
𝑇 𝝃 +

𝑝 𝑥

Δ
𝑞𝑓𝑦0 − 𝑞0𝑦𝑓 +

𝑞 𝑥

Δ
𝑝0𝑦𝑓 − 𝑝𝑓𝑦0

𝑦′ 𝑥 = ℎ′
𝑇
𝑥 +

𝑝′ 𝑥

Δ
𝑞0ℎ𝑓

𝑇 − 𝑞𝑓ℎ0
𝑇 +

𝑞′ 𝑥

Δ
𝑞𝑓ℎ0

𝑇 − 𝑝0ℎ𝑓
𝑇 𝝃 +

𝑝′ 𝑥

Δ
𝑞𝑓𝑦0 − 𝑞0𝑦𝑓 +

𝑞′ 𝑥

Δ
𝑝0𝑦𝑓 − 𝑝𝑓𝑦0

𝑦′′ 𝑥 = ℎ′′
𝑇
𝑥 +

𝑝′′ 𝑥

Δ
𝑞0ℎ𝑓

𝑇 − 𝑞𝑓ℎ0
𝑇 +

𝑞′′ 𝑥

Δ
𝑞𝑓ℎ0

𝑇 − 𝑝0ℎ𝑓
𝑇 𝝃 +

𝑝′′ 𝑥

Δ
𝑞𝑓𝑦0 − 𝑞0𝑦𝑓 +

𝑞′′ 𝑥

Δ
𝑝0𝑦𝑓 − 𝑝𝑓𝑦0

We define the following parameters:

𝑐𝑐 =
𝑞𝑓𝑦0 − 𝑞0𝑦𝑓

Δ

𝑎𝑎 =
𝑞0ℎ𝑓

𝑇 − 𝑞𝑓ℎ0
𝑇

Δ
𝑏𝑏 =

𝑞𝑓ℎ0
𝑇 − 𝑝0ℎ𝑓

𝑇

Δ

𝑑𝑑 =
𝑝0𝑦𝑓 − 𝑝𝑓𝑦0

Δ

ToC approach to solve Linear ODEs
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Then:
𝑦 𝑥 = ℎ𝑇 𝑥 + 𝑝 𝑥 𝑎𝑎 + 𝑞 𝑥 𝑏𝑏 𝝃 + 𝑝 𝑥 𝑐𝑐 + 𝑞 𝑥 𝑑𝑑

𝑦′ 𝑥 = ℎ′
𝑇
𝑥 + 𝑝′ 𝑥 𝑎𝑎 + 𝑞′ 𝑥 𝑏𝑏 𝝃 + 𝑝′ 𝑥 𝑐𝑐 + 𝑞′ 𝑥 𝑑𝑑

𝑦′′ 𝑥 = ℎ′′
𝑇
𝑥 + 𝑝′′ 𝑥 𝑎𝑎 + 𝑞′′ 𝑥 𝑏𝑏 𝝃 + 𝑝′′ 𝑥 𝑐𝑐 + 𝑞′′ 𝑥 𝑑𝑑

• By plugging into:

we obtain the equation with the following form: 

𝑐2𝑘2 ℎ′′
𝑇
𝑥 + 𝑝′′ 𝑥 𝑎𝑎 + 𝑞′′ 𝑥 𝑏𝑏 𝝃 + 𝑝′′ 𝑥 𝑐𝑐 + 𝑞′′ 𝑥 𝑑𝑑 +

𝑐𝑘1 ℎ′
𝑇
𝑥 + 𝑝′ 𝑥 𝑎𝑎 + 𝑞′ 𝑥 𝑏𝑏 𝝃 + 𝑝′ 𝑥 𝑐𝑐 + 𝑞′ 𝑥 𝑑𝑑 +

𝑘0 ℎ′′
𝑇
𝑥 + 𝑝′′ 𝑥 𝑎𝑎 + 𝑞′′ 𝑥 𝑏𝑏 𝝃 + 𝑝′′ 𝑥 𝑐𝑐 + 𝑞′′ 𝑥 𝑑𝑑 = 𝑓(𝑥)

𝑐2𝑘2𝑦
′′ 𝑥 + 𝑐𝑘1𝑦

′ 𝑥 + 𝑘0𝑦 𝑥 = 𝑓(𝑥)

ToC approach to solve Linear ODEs
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By rearranging the terms of the equation just obtained, the solution of the initial ODE is reduced to 
the solution of a Linear System

𝐴𝑖𝑗 = 𝑐2𝑘2ℎ𝑖𝑗
′′ + 𝑐𝑘1ℎ𝑖𝑗

′ + 𝑘0ℎ𝑖𝑗 + 𝑐2𝑘2𝑝𝑖
′′ + 𝑐𝑘1𝑝𝑖

′ + 𝑘0𝑝𝑖 𝑎𝑎𝑗 + 𝑐2𝑘2𝑞𝑖
′′ + 𝑐𝑘1𝑞𝑖

′ + 𝑘0𝑞𝑖 𝑏𝑏𝑗

𝑏𝑖 = 𝑓𝑖 − 𝑐2𝑘2𝑝𝑖
′′ + 𝑐𝑘1𝑝𝑖

′ + 𝑘0𝑝𝑖 𝑐𝑐 − 𝑐2𝑘2𝑞𝑖
′′ + 𝑐𝑘1𝑞𝑖

′ + 𝑘0𝑞𝑖 𝑑𝑑

• Once we get 𝝃 by a Least-Squares, it is replaced in the constrained expressions shown previously:

𝑦 𝑥 = ℎ𝑇 𝑥 𝝃 + 𝜂1𝑝 𝑥 + 𝜂2𝑞(𝑥)

𝑦′ 𝑥 = ℎ′𝑇 𝑥 𝝃 + 𝜂1𝑝
′ 𝑥 + 𝜂2𝑞

′(𝑥)

𝑦′′ 𝑥 = ℎ′′𝑇 𝑥 𝝃 + 𝜂1𝑝
′′ 𝑥 + 𝜂2𝑞

′′(𝑥)

𝐴 𝝃 = 𝑏

ToC approach to solve Linear ODEs
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ToC approach to solve Linear ODEs

• We can now reconstruct the solution of the initial equation as a function of 𝑡 :

𝑦 𝑡 = 𝑦(𝑥) ሶ𝑦 𝑡 = 𝑐𝑦′(𝑥) ሷ𝑦 𝑡 = 𝑐2𝑦′′(𝑥)

• Finally, by calculating the residuals, we can check the precision of the equation:

𝑅𝑒𝑠 = 𝑘2 ሷ𝑦 𝑡 + k1 ሶ𝑦 𝑡 + 𝑘0𝑦 𝑡 − 𝑓(𝑡)

PRECISION OF THE EQUATION ∝
𝟏

𝑹𝒆𝒔
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Radiative Transfer Equation

Basic Formulation of the Radiative Transfer Problem

The Radiative Transfer Equation RTE (according to Chandrasekhar) to be solved is:

𝜇
𝜕

𝜕𝑡
𝐼 𝜏, 𝜇, 𝜙 + 𝐼 𝜏, 𝜇, 𝜙 =

𝜔

4𝜋
න
−1

1

න
0

2𝜋

𝑝 cosΘ 𝐼 𝜏, 𝜇′, 𝜙′ 𝑑𝜙′𝑑𝜇′

With the following constraints:

൜
𝐼 0, 𝜇, 𝜙 = 𝜋𝛿 𝜇 − 𝜇0 𝛿 𝜙 − 𝜙0

𝐼 Δ, 𝜇, 𝜙 = 0

for 𝜇 > 0
for 𝜇 < 0

17



• Separation of the Intensity into uncollided fraction and collided fraction (or diffused)

• Making use of the Addition Theorem of the Spherical Harmonics to express the phase function:

𝑝 cosΘ = ෍

𝑚=0

𝐿

2 − 𝛿0,𝑚 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇′ 𝑃𝑙

𝑚(𝜇) cos 𝑚 𝜙′ − 𝜙

• Expression of the diffused fraction by Fourier series (Siewert 1998):

𝐼∗ 𝜏, 𝜇, 𝜙 =
1

2
෍

𝑚=0

𝐿

2 − 𝛿0,𝑚 𝐼𝑚(𝜏, 𝜇) cos 𝑚 𝜙′ − 𝜙

where the m-th Fourier component satisfies the equation of transfer

𝜇
𝜕

𝜕𝜏
𝐼𝑚(𝜏, 𝜇) + 𝐼𝑚(𝜏, 𝜇) =

𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇 න

−1

1

𝑃𝑙
𝑚 𝜇′ 𝐼𝑚 𝜏, 𝜇′ 𝑑𝜇′ +

𝜔

2
𝑒−𝜏/𝜇0 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇0 𝑃𝑙

𝑚 𝜇𝑖

• Discretization of  𝜇 → 𝜇𝑖 where    i = 1, … ,N

Radiative Transfer Equation
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• Change of variable: from τ to x

• Splitting of the equation in forward flux and backward flux.

• Gauss-Legendre quadrature for calculating the integral in the range 0,1 .

𝑐𝜇𝑖
𝜕

𝜕𝑥
𝐼𝑚
+ + 𝐼𝑚

+ =
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 𝜇𝑘 𝐼𝑚

+ + −1 𝑙−𝑚𝐼𝑚
− +

𝜔

2
𝑒−𝜏/𝜇0 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇0 𝑃𝑙

𝑚 𝜇𝑖

−𝑐𝜇𝑖
𝜕

𝜕𝑥
𝐼𝑚
− + 𝐼𝑚

− =
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 −𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 −𝜇𝑘 −1 𝑙−𝑚𝐼𝑚

+ + 𝐼𝑚
− +

𝜔

2
𝑒−𝜏/𝜇0 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇0 𝑃𝑙

𝑚 −𝜇𝑖

with following boundary conditions:

𝐼𝑚
+ 0 = 0 𝐼𝑚

− Δ = 0

Radiative Transfer Equation
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Solution of the RTE via ToC: 
Formulation

𝐼𝑚
+ 𝑥 = 𝑔+ 𝑥 + 𝜂+𝑝(𝑥)

𝐼𝑚
− 𝑥 = 𝑔− 𝑥 + 𝜂−𝑞(𝑥)

𝐼𝑚
+ 𝑥 = 𝑔+ 𝑥 + 𝜂+

𝐼𝑚 𝑥 − = 𝑔− 𝑥 + 𝜂−

→

→

𝐼0
+ = 0 = 𝑔0 + 𝜂+ 𝜂+ = −𝑔0

𝐼0
− = 0 = 𝑔0 + 𝜂− 𝜂− = −𝑔𝑓

𝐼𝑚
+ = 𝒉𝑇 − 𝒉𝟎

𝑇 ⋅ 𝝃+ 𝐼𝑚
− = 𝒉𝑇 − 𝒉𝒇

𝑇 ⋅ 𝝃−

• Finally, we get the solutions in the following forms:

• Replacement of 𝜂 in the constrained expressions:

𝐼𝑚
+ 𝑥 = 𝑔+ 𝑥 − 𝑔0 𝐼𝑚

− 𝑥 = 𝑔− 𝑥 − 𝑔𝑓

• Use of boundary conditions to find the coefficients 𝜂 :

Choise of p(x) and q(x)
As first Chebyshev polynomials = 1• Constrained expressions:

Formulation via ToC
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Solution of the RTE via ToC: 
Formulation

• Replacement of the constrained expressions in the two DEs

𝑐𝜇𝑖𝒉
′ + 𝒉 − 𝒉𝟎 ⋅ 𝝃𝒊

+ −
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 𝜇𝑘 𝒉 − 𝒉𝟎 ⋅ 𝝃𝒌

+

−
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 𝜇𝑘 −1 𝑙−𝑚 𝒉 − 𝒉𝒇 ⋅ 𝝃𝒌

− =
𝜔

2
𝑒−𝜏/𝜇0 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇0 𝑃𝑙

𝑚 𝜇𝑖

−𝑐𝜇𝑖𝒉
′ + 𝒉 − 𝒉𝒇 ⋅ 𝝃𝒊

− −
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 −𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 −𝜇𝑘 𝒉 − 𝒉𝒇 ⋅ 𝝃𝒌

−

−
𝜔

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 −𝜇𝑖 ෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 −𝜇𝑘 −1 𝑙−𝑚 𝒉 − 𝒉𝟎 ⋅ 𝝃𝒌

+ =
𝜔

2
𝑒−𝜏/𝜇0 ෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚 𝜇0 𝑃𝑙

𝑚 −𝜇𝑖

• Computation of the coefficients 𝝃 by solving the system 𝑨 ⋅ 𝝃 = 𝒃

of dimensions: 2𝑀𝑁 × 2𝑚𝑁 ⋅ 2𝑚𝑁 × 1 = 2𝑀𝑁 × 1
22

M = spatial discretization points
N = angle discretization points
m = number of polynomials 𝑨 𝝃 𝒃



Solution of the RTE via ToC: 
Formulation
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Solution of the RTE via ToC: 
Formulation

• Substitution of ξ coefficients in the constrained expressions

𝑐𝛾𝑗𝒉
′ + 𝒉 − 𝒉𝟎 ⋅ 𝜻𝒋

+ =
ω

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚(𝛾𝑗)෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 𝜇𝑘 𝒉 − 𝒉𝟎 ⋅ 𝜉𝑘

+ + −1 𝑙−𝑚 𝒉 − 𝒉𝒇 ⋅ 𝜉𝑘
− + 𝑏𝑗

+

−𝑐𝛾𝑗𝒉
′ + 𝒉 − 𝒉𝒇 ⋅ 𝜻𝒋

− =
ω

2
෍

𝑙=𝑚

𝐿

𝛽𝑙𝑃𝑙
𝑚(−𝛾𝑗)෍

𝑘=1

𝑁

𝑤𝑘𝑃𝑙
𝑚 −𝜇𝑘 −1 𝑙−𝑚 𝒉 − 𝒉𝟎 ⋅ 𝜉𝑘

+ + 𝒉 − 𝒉𝒇 ⋅ 𝜉𝑘
− + 𝑏𝑗

−

The new arbitrary angles are 𝛾𝑗 and the new unknown vector is 𝜁𝑗
±, computed by a Least-Squares method.  

𝐼∗
+ 𝜏, 𝜇, 𝜙 =

1

2
෍

𝑚=0

𝐿

2 − 𝛿0,𝑚 𝑰𝒎
+ (𝝉, 𝝁) cos 𝑚 𝜙′ − 𝜙 𝐼∗

− 𝜏, 𝜇, 𝜙 =
1

2
෍

𝑚=0

𝐿

2 − 𝛿0,𝑚 𝑰𝒎
− (𝝉, 𝝁) cos 𝑚 𝜙′ − 𝜙

𝑰𝒎
+ = 𝒉 − 𝒉𝟎 ⋅ 𝝃+ 𝑰𝒎

− = 𝒉 − 𝒉𝒇 ⋅ 𝝃−

• Post-processing, to find solutions at every polar angle, and at any slab’s point (via ToC)

• Substitution of the m-th Fourier series component:

24



•The accuracy of this new method for the RTE solution was validated by 
comparing the results with the benchmarks published by C.E. Siewert et. al, 
for the following case studies:
• Isotropic, Two-Stream Approximation;
• Isotropic, Multi-stream;
• Anisotropic, Mie Scattering;
• Anisotropic, Haze L Problem.

•For all the cases considered, we obtained the same digits published by Garcia 
& Siewert (1986)

Solution of the RTE via ToC: 
Results

25



RTE via ToC
N = 30

RTE via ADO
N = 100 ÷150

vs.

Haze L Problem
for m=0 Fourier component
(normal incident beam and 

conservative case)

𝜔 = 1
𝜇0 = 1
Δ = 1

Solution of the RTE via ToC: 
Results

26

• CPU time for the Least-Squares ≅ 8,5
seconds

• Total CPU time to run the code (including 
matrices construction, plots and post-
processing) ≅ 25 seconds



RTE via ToC
N = 30

RTE via ADO
N = 100 ÷150

vs.

Haze L Problem
for 83 m Fourier components

𝜔 = 0.9
𝜇0 = 0.5
Δ = 1

𝜙 − 𝜙0 = 𝜋/2

Solution of the RTE via ToC: 
Results

27

• CPU time per Least-Squares for each m ≅ 8,5
seconds

• Total CPU time for any Least-Squares ≅ 11,7
minutes

• Total CPU time to run the code (including 
matrices construction, plots and post-
processing) ≅ 25 minutes
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Conclusions and Outlooks

• The RTE is solved via the recently developed ToC
▪ The accuracy of the results is compared with the recognized benchmarks

▪ Straightforward implementation

▪ Reformulation not required for the conservative case ω=1

• Future developments
▪ To use this new methodology to compute the Reflectance, for the study of 
asteroid binary systems properties through light-curves inversions
▪ To solve RTE for the multi-slab case
▪ To solve the 3D time-dependent RTE
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